4.2.12 Constituent Material Model Identification:

Purpose: To select the model for the fiber and matrix constituents.

*FIBER

NFIBS=nfibs

The following new line is to be repeated for each fiber (nfibs):

 $NF=nf_f$ $MS=ms_f$ $MF=ncmd_f$ NDPT=dpt TEMP=mtemp $MAT=mat_f$ & IFM=ifm $D=d_1,d_2,d_3$

***MATRIX**

NMATX=nmatx

The following new line is to be repeated for each matrix (nmatx):

 $NM=nm_m$ $MS=ms_m$ $MM=ncmd_m$ NDPT=dpt TEMP=mtemp $MAT=mat_m$ & IFM=ifm $D=d_1,d_2,d_3$

***MONOL** (available for laminate option only)

NMON=nmon

The following new line is to be repeated for each monolithic material (nmon):

 ${\sf NMO}=nmo_{iso}$ ${\sf MS}=ms_{iso}$ ${\sf MMO}=ncmd_{iso}$ ${\sf NDPT}=dpt$ ${\it TEMP}=$ mtemp & ${\sf MAT}=mat_{iso}$ ${\it IFM}=$ ifm

%

Where:

nfibs: - number of different fibers

nmatx: - number of different matrices

nmon: - number of different monolithic layers

nf_i: - fiber material designation number running from 1 to *nfibs*, sequentially.

nm_m: - matrix material designation number running from 1 to *nmatx*, sequen-

tially.

*nmo*_{iso}: - monolithic material designation number running from 1 to *nmon*,

sequentially.

msf: - fiber material system ID (required only when using laminate option)

ms_m: - matrix material system ID. (required only when using laminate

option)

*ms*_{iso}: - monolithic material system ID

ncmd: - material model identifier for either fiber, matrix or monolithic layer:

- 1 = Bodner-Partom Model
- 2 = Modified Bodner-Partom Model
- 3 = Robinson Viscoplastic Model
- 4 = Generalized Viscoplastic Potential Structure (GVIPS) Model
- 6 = Transversely Isotropic Elastic Model (2-3 isotropic plane)
- 7 = Transversely Isotropic GVIPS Model (TGVIPS)
- 9 = Local Transversely Isotropic Elastic Model
- 99 = User defined model (see note at the end of section for special format instructions)

mat: - material identification letter for either fiber or matrix, selected from material database, see **Table II**.

Note: By specifying MAT=U allows the user to specify the material constants according to the formats specified below.

 flag indicating whether material constants should be temperature independent or temperature dependent

1 = Temperature Independent

2 = Temperature Dependent

- the constant temperature at which material properties are to be taken
 (only required for dpt= 1 and when using database properties)

 flag indicating whether material properties will be read from input file or taken from a user defined function (provided in the USRFUN subroutine) ONLY NEEDED when MAT=U.

1 = read from input file

2 = functional form taken from USRFUN routine

- d_i: direction vector defining the normal to the plane of local isotropy
 (only required for ncmd = 3, 7 or 9)
- Note: If modid=1 (Double periodicity) and one desires transverse isotropy using ncmd= 3,7 or 9 then the strong material direction must be specified in the 1-direction.
- ▼ Note: Additional Input is required if the *DAMAGE (section 4.2.6) option is invoked

The following additional data is entered on a **new line**:

ANG= θ BN=b BP=b' OMU= $\omega_{\rm u}$ OMFL= $\omega_{\rm fl}$ OMM= $\omega_{\rm m}$ ETU= $\eta_{\rm u}$ & ETFL= $\eta_{\rm fl}$ ETM= $\eta_{\rm m}$ BE= β A=a SFL= $\sigma_{\rm fl}$ XML=M SU= $\sigma_{\rm u}$ SK=sk %

where:

dpt:

ifm

sk:

- = 1 skip fatigue damage calculations for this material
- = 0 perform fatigue damage calculations

The remaining constants are described in section 3.5

Note: In addition, for FL=1 (micro failure criteria) in section 4.2.6, the additional data is also required:

T=ss IC=icomp V=val

SS:

- 1 stress
- 2 strain

comp:

- 1 component 11
- 2 component 22
- 3 component 33
- 4 component 23
- 5 component 13
- 6 component 12

- value of failure stress or strain (depending on value of ss)

Example 1: select 1 fiber, SCS-6, and 1 matrix material, TIMETAL 21S, both read from database; i.e., SCS-6/TIMETAL 21S composite system

***FIBER**

NFIB=1

NF=1 MF=6 NDPT=1 TEMP = 23 MAT=D %

***MATRIX**

NMATX=1

NM=1 MM=4 NDPT=1 TEMP = 23 MAT=A %

- Note: See Section 3.3 for a mathematical description of each material model.
 - **Example 2:** (select 2 matrix materials; material 1: Boron, read from database, material 2: user supplied properties)

*MATRIX

NMATX=2

- Solution States In the State of the States In th

Bodner-Partom: ncmd = 1

<u>Elastic</u>: <u>Inelastic</u>:

 $EL=E_L$, E_T , V_A , V_T , G_A , α_A , α_T $VI=D_0$, Z_0 , Z_1 , m, n,q

Modified Bodner-Partom: ncmd = 2

Elastic: Inelastic:

 $\mathsf{EL} = \mathsf{E_L}, \, \mathsf{E_{T_1}} \, \mathsf{v_A}, \, \mathsf{v_T}, \, \mathsf{G_A}, \, \alpha_A, \, \alpha_T \quad \mathsf{VI=D_0}, \, \mathsf{Z_0}, \, \mathsf{Z_1}, \mathsf{Z_2}, \, \mathsf{Z_3}, \, \mathsf{m_1 m_2}, \, \mathsf{n_1 a_2}, \, \mathsf{r_1}, \, \mathsf{r_2}, \, \mathsf{m_2 m_2}, \, \mathsf{m_2 m_2$

Dm₁, Dm₂

Robinson Viscoplastic: ncmd = 3

Elastic: <u>Inelastic</u>:

 $\mathsf{EL}=\mathsf{E}_\mathsf{L},\,\mathsf{E}_\mathsf{T},\,\mathsf{v}_A,\,\mathsf{v}_T,\,\mathsf{G}_\mathsf{A},\,\alpha_A,\,\alpha_T$ $\mathsf{VI}=\mathsf{n},\,\mathsf{m},\,\mu,\,\kappa_T,\,\beta,\,R,\,H,\,\hat{G}_0,\,\eta,\,\omega$

Directions: $D=d_1, d_2, d_3$

GVIPS: ncmd = 4

Elastic: <u>Inelastic</u>:

EL=E, v, α VI= μ , κ , R_{α} , R_{κ} , B_0 , B_1 , L_0 , L_1 , m, n,

 $p,\,q,\,w,\,z_0$

Elastic Model: *ncmd* = 6

 $\mathsf{EL}=\mathsf{E}_\mathsf{L},\,\mathsf{E}_\mathsf{T},\,\mathsf{v}_A,\,\mathsf{v}_T,\,\mathsf{G}_\mathsf{A},\,\alpha_A,\alpha_T$

TGVIPS: ncmd = 7

Elastic: Inelastic:

Directions: D=d₁,d₂,d₃

Transversely Isotropic Elastic Model: ncmd = 9

Elastic Directions:

 $\mathsf{EL} = \mathsf{E}_\mathsf{L}, \, \mathsf{E}_\mathsf{T}, \, \mathsf{v}_{A}, \, \mathsf{v}_{T}, \, \mathsf{G}_\mathsf{A}, \, \alpha_{A}, \alpha_{T} \qquad \mathsf{D} = \mathsf{d}_\mathsf{1}, \mathsf{d}_\mathsf{2}, \mathsf{d}_\mathsf{3}$

Table II. MAC/GMC Material Constant Database

		Temperature		
Model	Material	Dependent ?	Units	mat
Bodner-Partom	Aluminum (2024-T4)	Yes	Pa, sec, ^o C	А
ncmd = 1	Aluminum (2024-0)	Yes	Pa, sec, ^o C	В
all properties taken from ref [1]	Aluminum (6061-0a)	Yes	Pa, sec, ^o C	С
	Aluminum (6061-0b)	Yes	Pa, sec, ^o C	D
	Aluminum (pure)	Yes	Pa, sec, ^o C	Е
	Titanium (pure)	No	Pa, sec, ^o C	F
	Copper (pure)	No	Pa, sec, °C	G
Modified Bodner- Partom	TIMETAL 21S	Yes	Pa, sec, °C	A
ncmd = 2				
Robinson Visco-	Kanthal	No, 600°C	ksi, hr, ^o C	Α
plastic	FeCrAlY	Yes	ksi, hr, ^o C	В
ncmd = 3	W/Kanthal (vf=35%)	No, 600°C	ksi, hr, ^o C	С
GVIPS	TIMETAL 21S	Yes	ksi, sec, °C	Α
ncmd = 4				
Linear Elastic	Boron	No	Pa, °C	Α
<i>ncmd</i> = 6	SCS-6	Yes	Pa, °C	В
All properties are assumed isotropic	Tungsten (W)	No	Pa, °C	С
	Boron	No	ksi, ^o C	D
	SCS-6	Yes	ksi, ^o C	Е
	Tungsten (W)	No	ksi, ^o C	F
TGVIPS	Ti-6-4	Yes	ksi, sec, °C	Α
<i>ncmd</i> = 7				
Linear Elastic	T50 Graphite	No	Pa, °C	Α
<i>ncmd</i> = 9	T300 Graphite	No	Pa, °C	В
Transversely Isotropic	P100 Graphite	Yes	Pa, °C	С
	T50 Graphite	No	ksi, ^o C	D
	T300 Graphite	No	ksi, ^o C	E
	P100 Graphite	Yes	ksi, ^o C	F

Note: Warning: It is the user's responsibility to ensure that consistent material property units are being employed within a given problem. Particularly, when mixing database and user supplied material properties.

- Note: Even if a material model is temperature independent, it can still be used in a nonisothermal analysis (ndpt=2). Its properties will just not vary with temperature.
- Note: Required Format for User Supplied Non-Isothermal Material Constants: each of the following data statements are on separate lines.

- **Note:** The total number of viscoplastic constants (V1, V2, V3, ... VN) required for each model are described on the bottom of page 71. For ncmd=4, three extra lines (V15= κ_o V16= B_o ' V17= β_κ) must be added. Also, D= d₁, d₂, d₃ is only required when ncmd= 3, 7 or 9.
- **™ Note: Format for <u>User defined material model</u> (ncmd=99):**

Given **User Supplied_Isothermal Material Constants**, the following special format is required:

*FIBER

NFIBS=nfibs

The following line is to be repeated for each fiber (nfibs): NF= nf_f MS= ms_f MF=99 NDPT=dpt NPE=npe EL= $e_1,e_2,...e_{npe}$ & ALP= α_A , α_T NPV=npv VI= $v_1,v_2,...v_{npv}$ K= κ_A , κ_T %

***MATRIX**

NMATX=nmatx

The following line is to be repeated for each matrix (nmatx): $\begin{aligned} &\text{NM=}nm_m & \text{MS=}ms_m & \text{MM=}99 \text{ } NDPT=dpt & \text{NPE=}npe & \text{EL=}e_1,e_2,...e_{npe} \text{ & } \\ &\text{ALP=} & \alpha_A, & \alpha_T & \text{NPV=}npv & \text{VI=}v_1,v_2,...v_{npv} & \text{K=}\kappa_A, \kappa_T & \% \end{aligned}$

Where:

npe: - total number of elastic constants (maximum of 9)

npv: - total number of inelastic constants (model specific, max of 19)

 $e_1, e_2,...$ - elastic constants

 v_1, v_2, \dots - inelastic constants (model specific)

 α_A, α_B ... - longitudinal and transverse thermal expansion coefficients

 κ_A, κ_T ... - thermal conductivities (if ***COND** only)

OR given **User Supplied Non-Isothermal Material Constants**:

***FIBER**

NFIBS=nfibs

The following line is to be repeated for each fiber (nfibs): $NF=nf_f$ $MS=ms_f$ MF=99 NDPT=2 MAT= U IFM= 1 NPE=npe NPV=npv

with the following data statements immediately following each material declaration on a <u>separate</u> line.

$$\begin{array}{llll} \text{NTP=} & \textit{ntpts} \\ \text{TEM=} & T_{1}, \, T_{2}, \, ..., \, T_{\textit{ntpts}} \\ \text{E1=} & E_{1T_{1}}, \, E_{1T_{2}}, \, ... E_{1T_{\textit{ntpts}}} \\ \text{E2=} & E_{2T_{.}}, \, E_{2T_{.}}, \, ... E_{2T} \\ & \vdots \\ \text{Enpe=} & E_{\textit{npeT}_{1}}, \, E_{\textit{npeT}_{2}}, \, ... E_{\textit{npeT}_{\textit{ntpts}}} \\ \text{ALPA=} & \alpha_{AT_{1}}, \, \alpha_{AT_{2}}, \, ... \alpha_{AT_{\textit{ntpts}}} \\ \text{ALPT=} & \alpha_{TT_{1}}, \, \alpha_{TT_{2}}, \, ... \alpha_{TT_{\textit{ntpts}}} \\ \text{V1=} & V1_{T_{1}}, \, V1_{T_{2}}, \, ... \, V1_{T_{\textit{ntpts}}} \end{array}$$

$$\begin{array}{lll} \text{V2=} & V2_{T,}, V2_{T_2}, \dots V2_{T_{\text{-----}}} \\ \vdots & & \vdots & \\ \text{Vnpv=} & Vnpv_{T_1}, Vnpv_{T_2}, \dots Vnpv_{T_{ntpts}} \\ \text{KA=} & \kappa_{AT_1}, \kappa_{AT_2}, \dots \kappa_{AT_{ntpts}} \\ \text{KT=} & \kappa_{TT_1}, \kappa_{TT_2}, \dots \kappa_{TT_{ntpts}} \end{array}$$

***MATRIX**

NMATX=nmatx

The following line is to be repeated for each matrix (nmatx): $NM=nm_m \quad MS=ms_m \quad MM=99 \quad NDPT=2 \quad MAT=U \quad IFM=1 \quad NPE=npe \quad NPV=npv$

with the following data statements immediately following each material declaration on a <u>separate</u> line.

$$\begin{split} & \text{NTP=} & \textit{ntpts} \\ & \text{TEM=} & T_1, \, T_2, \, ..., \, T_{\textit{ntpts}} \\ & \text{E1=} & E_{1T_1}, E_{1T_2}, \, ... E_{1T_{\textit{ntpts}}} \\ & \text{E2=} & E_{2T_1}, E_{2T_2}, \, ... E_{2T_{\textit{ntpts}}} \end{split}$$

:

$$\begin{array}{lll} \mathsf{Enpe} = & E_{npeT_1}, E_{npeT_2}, \dots E_{npeT_{ntpts}} \\ \mathsf{ALPA} = & \alpha_{AT_1}, \alpha_{AT_2}, \dots \alpha_{AT_{ntpts}} \\ \mathsf{ALPT} = & \alpha_{TT_1}, \alpha_{TT_2}, \dots \alpha_{TT_{ntpts}} \\ \mathsf{V1} = & V1_{T_1}, V1_{T_2}, \dots V1_{T_{ntpts}} \\ \mathsf{V2} = & V2_{T_1}, V2_{T_2}, \dots V2_{T_{ntpts}} \end{array}$$

:

$$\begin{aligned} & \text{Vnpv} = & & Vnpv_{T_1}, Vnpv_{T_2}, \dots Vnpv_{T_{ntpts}} \\ & \text{KA} = & & \kappa_{AT_1}, \kappa_{AT_2}, \dots \kappa_{AT_{ntpts}} \\ & \text{KT} = & & \kappa_{TT_1}, \kappa_{TT_2}, \dots \kappa_{TT_{ntpts}} \end{aligned}$$

USRFUN: - Routine that defines functional form for material properties

Required when: ifm=2 and mat=U

USRFORMDE: - Routine that forms the stiffness matrix. Required when

ncmd = 99

USRCPEVAL: - Routine that defines the time derivative of the stiffness

matrix. Required when: a) **ifm=2 and mat=U**

b) ncmd=99 AND ifm=1 AND ndpt=2